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Ahstract-Uni-directional buckling of an dasti,'a with pinncd cnds is investigated. A rigid foun
d'ltion below the beam prnhibits downward detlection. and a uniform pressure acts on the beam
from abllve. The beam weight is neglected. and an a~ial compressive load is applied. Equilibrium
path, are determincd for VarillUS pressures. and the elreets of initial curvature and lo,ul,"Cccntricity
arc cx'lInincd.

I:\TRODUCTION

The one-way buckling of an elastica is considered. The beam has pinned ends and is
subjected to a compressive load. A rigid foundation lies on one side of the beam and a
uniform pressure acts on the other side. The weight of the beam is neglected.

A similar problem was investigated by Wang (1985). In his case. the elastica (or sheet)
was long and only a central portion buckled. so that there was no rotation at the points of
lift-off from the rigid foundation. Wang only treated the perfect system. whereas the present
study includes beams having initial curvature and loads applied eccentrically.

A related problem is that of a compressed horizontal beam lying on a rigid foundution
and subjected to a uniformly distributed vertical load. which may represent the weight of
the beam [e.g. sec Wang (1986) and the references cited therein]. If this system is perfect.
buckling docs not occur for a finite compressive load (i.e. there is no bifurcation from the
flat configuration). However. if the beam is compressed and then disturbed. it may suddenly
snap to a buckled shape. Also. if the beam hus some initial curvature and is compressed
with a quasi-statically increasing load. it muy deform continuously for a while and then
exhibit the snapping phenomenon. These results may be relevant for the behavior of sheets
of paper. textiles. plastics or metals.

Such problems involving transverse resistance occur in a number of fields. One is the
buckling of railroad tracks due to compressive loads caused by temperature rises (EI-Aini.
1976; Kerr. 1973. 1974. 1976, 1978a.b. 1979. 1980; Tvergaard and Needleman. 1981;
Samavedam el al.• (988). Vertical buckling of tracks is similar to that of the heavy beam.
but in horizontal (lateral) buckling the mode is not constrained to be uni-directional.

Buckling of pipelines. either buried or lying in trenches or on the seabed, is another
related problem (Courbon. 1980; Hobbs. 1981, 1984; Ariman, 1983; Kyriakides el al.•
1983; Yun and Kyriakides. 1985. 1986. 1988. 1990; Taylor and Gan. 1986; Ju and Kyria
kides. 1988; Nielsen el al.• 1988. 1990; Pedersen and Jensen. 1988; Pedersen and Michelsen.
1988; Vinogradov. 1988; Friedmann. 1989; Hobbs and Liang. 1989; Koh and Quek, 1990;
and Richards, (990). For example. the compressive loads may be caused by hot oil or gas
in the pipeline, or by ground movement resulting from seismic activity or differential
thawing of frozen soil. Roorda (1988) discussed "blow-up" failures of concrete roads and
runways and the growth ofdelaminations in composite laminates, while Hobbs (1989, 1990)
treated two-dimensional buckling of heavy plates resting on a rigid plane. Other related
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problems are the buckling of floating ice sheets. rock strata (Kerr. 1989). and fibers in
composite materials.

In this earlier work. sometimes the displacements are assumed to be small and a linear
analysis is carried out. while in other cases geometric nonlinearities are included. If there
is a rigid base. it may be frictionless. or frictional resistance to a.\ial displacement may be
included. with the friction force sometimes dependent on the tangential deformation. The
beams may be either perfectly straight before loading or initially curved. The beam material
is usually assumed to be linearly elastic. but nonlinearly elastic and elastic~plasticconsti
tutive laws have also been considered. For a beam surrounded by sailor ballast. the
resistance is sometimes taken to be a nonlinear function of the beam displacement. and in
some cases of buried pipelines a portion of the buckled shape may protrude out of the soil.

The present paper examines the buckling and post-buckling behavior of a slender.
inextensible. uniform. elastic beam [an elastica (Love. 19~~)1 on a rigid foundation. Deflec
tion of the beam is resisted by a uniform pressure. Compressive axial loads are applied quasi
statically at the ends of the beam. which are simply supported. Two types of imperfection are
treated: eccentricity of the axial loads and curvature of the foundation (and beam).

This research is related to work presented in Mrt}l and Plaut (1992). [n that study.
buckling and post-buckling behavior of discrete elastic systems lying on a frictional plane
are analysed. Resistance to displacement is dlll: to dry friction between the system and the
plane. The results obtained here for a pressure resistance are also applicable to the case of
such frictional resistance if the friction force has a constant magnitude and only acts in a
direction normal to the centerline of the beam.

FLASTlt'A

Consider the beam showo i!1 Fig. I. Itis inextensible. uniform. slender and elastic with
bending stilrness EI. It has length 2L and is simply supported at its ends. A rigid foundation
lies below the beam, and the beam cannot detlect downward. [n Fig. I(a), the foundation
is nat and the unstrained configuration of the beam is nat. In Fig. I (b), the foundation has
some curvature and the unstrained beam has the same t.:urvature and rests on the foundation.
The contact between the foundation and the beam is assumed to be frictionless. A buckled
configuration is depided in Fig. I (c). The horizontal compn:ssive loads arc P and the
uniform normal force is Q per unit length.

The arc length .~is measured from the center of the beam. When the beam is unstrained.
its configuration is defined by the angle lI,ln of its tangent (with O,,(.n = 0 if the beam is
nat), while f}(.V) denotes the angle for a deformed configuration. The configurations are
assumed to be symmetric about!J~= O. so that 0,,(0) = O. 0(0) = 0, V,,( -.n = -(J,,(.n. and
III -.n = -(J(.n. The rotation V(L) at the right support is denoted '1.. The loads Pan:
applied to the ends either at the centerline (i.e. concentrically) or at a small distance L\
normal to the centerline and below it (i.e. ecccntrit.:ally).

Consider an clement of the beam as shown in Fig. 2. The quantities M(.n. N(.V) and
V(.i'") are the bending moment, axial force and shear fort.:e. respecti\·ely. with positive senses
indicated in Fig. 2. From the equilibrium of tangential fort.:es. moments and normal forces.
with d.i'" -> O. and from Hooke's law, one obtains the equations

y a

6+k~i:Jii;"i/'Jii;""lil ~
L--j

(a) (b) (c)

Fig. I. Geometry or cla'tica : (a) unhuckled configuration with no initial curvature; (h) unhuckled
configuration with initial curvature; (c) huck led configuration.
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Fig. 2. Equilibrium of element of elastica.

N' = Vfl'. V = AI'. V' +N()' = Q. AI = E/(fJ' -fJ;,).

2093

(Ia.b.c.d)

where a prime denotes differentiation with respect to s.
Assume that the foundation profile and unstrained beam configuration are given by

(2)

where /l may be zero (flat profile) or a positive I:onstant (circular profile). Then eqns (I a.
b. d) lead to the relations

Integration of cqn (Jb) yields

V = ElO". N' = EIO'()".

N(.f) = Nil + (EI/2)[()'(·\,)I~

(341. b)

(4)

where Nil is a constant. Then substitution of eqns (3a) and (4) into eqn (Ie) yields the
following nonlinear equation in ()(§) :

EIO'" +Nol)' + (EI/2)(O') 3 = Q. (5)

Since the slope and shear force are zero at the center. and the moment is Pli cos (X at the
right support. the boundary conditions arc

0(0) = 0, 0"(0) = o. EI[()'(L)-O;,(L)} = Plicos'X.

Also. horizontal equilibrium at .~ = L furnishes the condition

P = Nil cos (X + (EI/2)[O'( LW cos 'X - £IO"(L) sin 'X

where eqns (3a) and (4) have been used.
Now define the nondimensional quantities

(6a .b. c)

(7)

of = .f/L. i'~ = NIIL 1/(£/). p = PL~/(£/). q = QL 3/(E/). J = t./L. fl = /lL. (8)

and let primes denote differentiation with respect to s. Then eqns (5)-(7) become

0(0) = O. 0"(0) = O. 0'(1) = fl+pJcos'X. (9.10)

and
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p = :'~ cos:x + (I 2)[0'( I)r cos:x -11"( I) sin:x. (II)

respectively. while eqn (2) becomes 8,,(1') = lis.
In some cases with small curvature ()'. a linearized solution will be accurate. Suppose

that the term (I 2) (II') 1 can be neglected in eqn (9). The solution of the resulting linear
equation. with boundary conditions ( 10). is given by

( 12)

where cos :x ::: I has been used when (i i= O. and p = :'~. This solution becomes unbounded
as:' -- rc,2. which corresponds to the Euler buckling load'vil = rc'EI/(4L') obtained from
the lowest eigenvalue of the linearized system when q = fJ = () = 0 (a perfect. pinned
pinned column of length 2L).

PERFECT SYSTEM

In this section. assume that the heam is initially straight (/J = 0) and the load is applied
concentrically (c) = 0). Numerical solutions ofeqns (9) and (10) arc obtained with the use
of a shooting method (Wang. 191\4). For a specified value of /. eqn (9) is solved by a
Runge -KUlla method with "initial conditions" /1(0) = O. /1"(0) = O. and different values of
0'(0) until the condition /I' ( I) = 0 is satisfied. Then I' is given hy eqn (II) with :x = O( I).

Results are presented in Fig. 3 for nondimensional pressures q = O. 0.1. 0.3, 0.5 and
1.0. The nondimensional compressive load p is plotted as a function of the end rotation IX.

When there is no pressure (If = 0). the nontrivial equilihrium path hifurcates from the trivial
solution (ll = 0) at I' = rc'/4. When If> O. there is no bifurcation and the flat beam (:x = 0)
is stahle fllr any load. On the equilibrium paths. I' -- Y. as :x -- O. and there is a minimum
at a value 01'1' larger than rc'14. This minimum value ofp is called the "safe buckling load"
by Kerr ( 1973) and is I' = 2.6:-1. 2.:-14. 2.93 and 3.0 I for q = 0.1.0.3.0.5 and 1.0. respectively.
For higher loads. a disturbance may cause the straight elastica to snap suddenly toward
the rising (right) side of the equilibrium path in Fig. 3. which is associated with large
Jisplacements. Such a jump is sometimes called "upheaval buckling" (Richards, 1990).

5.0,.....,.-,.--.,---.----r--,---...,---,----,---,--,--,---,

4.5

4.0

P 3.5

3.0
1~~~~2.5L

q-O

2.0 L--_...L-_--1.._--'-__~_.l.-_...L-_-l.._---'__l...-._...l-_-'-_~

o 0.2 0.4 0.6 0.8 1.0 1.2
a

Fig. 3. Effect of pressure on load -displacement curves for elastica; Ii = o. ,; = O.
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Fig. 4. Load~isplacement curves for elastica; q = 0.1. If = O. ,j = o.

The equilibrium path for q = 0.1 is replotted in Fig. 4. In addition. the linear solution
is shown as a dash-dot line. It is obtained from eqn (12) with [J = () = O. ~ = O( I). and
p = }'~. and the equilibrium path decreases monotonically as ~ increases. approaching the
Euler buckling load p = 7[~/4 (Kerr. 1974). If the linear solution (12) is used to determine
~. and then the nonlinear relation (II) is applied to obtain p. the resulting pairs (~.p) form
the d~lshed line in Fig. 4. which m~IY be termed a "quasi-linear" solution.

A perturbation analysis was also carried out. For {I = () = 0 and small values of q and
()'. let

( 13)

where e is a small parameter. These relations are substituted into elJns (9) and (10). which
are then divided by )e. Setting the coefficients of eO eq ual to zero yields

( 14)

which has the linear solution (12) with 0 replaced by '" I, }' by II. and q by r.
Next. the coefficients of e I are set equal to zero. This leads to the system

( 15)

which has the solution

( 16)

where the cj are given in the Appendix. The functions", I (s) and '" ~(s) are substituted into
eqn (13) to give O(s). which can be written in terms of I I and q. The first-order terms (from
'" I) are proportional to q. and the terms from '" ~ are proportional to qJ. To obtain numerical
results. II is varied.:x is given by 0(1). and p is determined from eqn (II). For q = 0.1. the
equilibrium path based on this perturbation solution is indistinguishable in Fig. 4 from the
numerical solution of the nonlinear system (9)-( II). given by the solid curve.

INITIAL CURVATURE

In this section. the foundation is curved and the beam has initial curvature (00 = [Js)
but the loads have no eccentricity (15 = 0). The initial slope at the support (s = I) is ~ = [J.
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Fig. 5. Etfect of initial curvature on load-displacement curves (If elastica; «= 0.1. ,i= O.

For the shooting method used with eqns (9) and (10), the condition at .I" = I is now
()' (I) := /1. The pressure is taken to be q := 0.1. Equilibrium paths in the (x. p) plane arc
presented in Fig. 5 for /1 = 0.03. 0.05 and 0.10, as well as for the perfed system (/I := 0).

As the compressive load is increased. no displacement occurs (x := /1) until a certain
threshold is reached. This value is p = 3.30, 2.00 and 1.00 for /1 := 0.03. 0.05 and 0.10.
respectively. If /f is sulliciently small. the initial load displacement curve for x > /i has a
negative slope, e.g. for /f = 0.03 in Fig. 5. For such a case. ifp is increased past its threshold
value. the elastica suddenly s..n,ps toward an equilibrium state with large displacements.
However. if /1 is sulliciently large, e.g. for /1 = 0.05 and 0.10 in Fig. 5, the path is rising and
displacements change smoothly with increasing load. Hence buckling only occurs if the
initial curvature is sulliciently small.

ECCENTRICITY

Now suppose that the beam is initially straight UI = 0) but that the loads P arc applied
quasi-statically at a small distance L\ normal to the centerline and below it. Results for
,/ = 0.1 arc shown in Fig. 6 with ,) = 0.0 1,0.02,0.03, 0.()4 and 0.05, along with the concentric
case t5 = O. A logarithmic scale is used on the abscissa.

5

4
I

I
I

I
I

3
5-0.01

I
I

P
I

I

2

a

Fig. 6. EITect of eccentricity (In load ·displacement curves for c1astica ; q = 0.1. fI = O.
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In order to obtain the load-displacement curves in Fig. 6 with J > 0, first the shooting
method was applied to eqns (9) and (to) with (J =0 and p defined by eqn (11). This yields
the solid curves on the right side of the figure. As :x is decreased (from:x = I), the central
deflection of the buckled configuration decreases [see Fig. 7(f), (e), (d)j and reaches zero
at the ends of these solid curves [see Fig. 7(c)J. This occurs at :x = 0.009 and p = 3.97, 2.04,
1.37, 1.03 and 0.83 for <5 = 0.01, 0.02, 0.03, 0.04 and 0.05, respectively.

For smaller values of :x, the beam is constrained by the rigid foundation and the
boundary conditions (10) must be altered. In the range where the curves in Fig, 6 are
dashed. the beam has no deflection at the centre point (s = 0). and the shear force there is
not zero [see Fig. 7(c)]. Hence the boundary condition 8"( 1) = 0 is replaced by the condition

II sin lJ(s) ds = 0
n

(17)

requiring that the deflection be the same at s = 0 and s = I. This case will be designated
"mode B", For smaller values of ~ (:x < 0.004). depicted by solid curves on the left in Fig.
6. the beam has no deflection in a central region [see Fig. 7(a), (b»). This will be designated
"mode A". If lift-off occurs at s = G, then the boundary conditions for the buckled section
(ll < S < I) arc given by

O(ll) =O. O'(ll) =O. O( I) =o. i' sin (}(s) ds =O.
<l

( 18)

For mode A, the rotations are very small. However, since the length of e:.tch uplifted
section also may be small, the curvature m:.ty not be small and the nonlinear term in eqn
(9) may be important. 80th a nonlinear and a linear analysis were carried out, and it turned
out that the results were almost identicat:"'or mode B. a linear solution is also very accurate.
The linear solution is presented here, in terms of the beam del1ection.

Consider the coordinate .\" measured from the lefl support, and the upward dellection
l. as shown in Fig. I(a). and let y =J/L am! x = .\'1L. The linearized el(uilibrium equation
for y(x) is

y""(x) +y2y"(X) = -q ( 19)

with the load given by p = y2 and () related to y by O(x) = - y'(x). The solution vI' eqn (19)
has the form

C':::--. ~
(a) p -0.20. Ym - 1.1 X 10'5 (b) P -0.80. Ym - 1.9 X 10'4

(e) p -2.30, Y. - 0.041 (fl P -3.21. Y. _ 0.73

Fig. 7. Bucklt.-d configurations ofelastica; q == 0.1. P== 0." == 0.02. The vertical scales are magnified
in (a)·(e).
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y(x) = - ..,:cxc+"I+"cx+ellsin;·x+"~cos:·x.
-f

(20)

As the eccentric load is increased from zero. the beam first exhibits mode A [Fig. 7(a). (b)].
The nondimensional length of each buckled region is denoted h(O < h < I). and the beam
has no deflection. rotation or bending moment at x = h. Hence the boundary conditions
for mode A are

.1'(0) = O. /'(0) = -1'<5. y(h) = O. y'(h) = O. y"(h) = O. (21 )

Application of these conditions to eqn (20) leads to a transcendental equation for hand
formulae for "I' "c' ell and "J. which are given in the Appendix. As mentioned earlier.
resulting curves of I' as a function of the end rotation J. are plotted on the left side of Fig.
6 for five values of eccentricity.

As pis increased. the buckled length h increases. When h reaches unity. mode B takes
over [Fig. 7(c)]. In this mode. the bending moment at the center of the beam (x = I) is not
zero. so that the boundary conditions are given by the tirst four conditions in eqn (21) with
h = I. The resulting coetlicients in eqn (20) are listed in the Appendix. and load-dis
placement paths are depicted as dashed curves in Fig. 6.

As I' is increased further. the dashed curves in Fig. 6 meet the solid equilibrium paths
nased on eqns (9) (II). for which the central deflection .1'( I) is positive [Fig. 7(dl. (e), (0).
Mode B tJeeomes unstatJle and the center of the heam lifts oil' the foundation. For eccen
tricities Ii = 0.02. 0.03. (L04 and 0.05 in Fig. 6. this transition is smooth. since the new
equilibrium paths are rising and stable. The sequence of buckling modes for the case
(i = 0.02 is illustrated in hg. 7, where .1'", denotes the maximum value of y for each
configuration. However. iLi = (l,() I and fI is increased beyond its tJifureation value fI = 3.97.
the elastica snaps suddenly t-;~ard a state with very large displacements. Thus, if the
eccentricity is suflil:iently small. tJuckling Ol:curs when the center of the tJeam first deflcds
and the curvature of the central region changes sign.

CONCLlJ()I~G REMARKS

The work presented here is ditferent in several respects from the studies described in
the references. First of all. the ends of the beam considered here are simply supported.
whereas the previous investigations treated cases in which the beam is tangential to the
foundation at the ends of an uplifted section (usually an interior section of a long beam).
Secondly. the case ofeccentric loading is included here. but not in the references. In addition.
only Wang ( 1985) also considered downward pressure; the other papers treated a uniformly
distributed vertical load (e.g. the weight of the beam). The behavior for these two types of
loading is similar when the beam rotations arc small.

The foundation profile in the present study is assumed to be Ilat [Fig. I(a)] or circular
(fig. I(b)]. with the unstrained beam in full contact with the foundation. [Partial contact
is considered. for exam pic. in Richards (1990).] The dellections of the beam turn out to be
symmetric about its l:enter. Thus the analysis can be carried out using half of the beam. If
the foundation were symmetric but not rigid, asymmetric dellections might occur. The only
reference including an asymmetric and rigid foundation is Koh and Quek (1990). [n that
study. the upheaval buckling loads (corresponding to a jump in the beam configuration as
the compressive load is increased) for an asymmetric foundation arc sometimes lower and
sometimes higher than those for a related symmetric foundation.

[n the problem analysed by Yun and Kyriakides (1985). extensibility of the beam had
little effect on the results. Here. and in a numher of the previous papers. longitudinal
deformation is neglected and the beam is assumed to he inextensible. Also. friction between
the beam and the foundation is neglected here. although it is included in many of the
references.
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The forms of the load-displacement curves in Fig. 3 for the flat foundation and Fig.
5 for the circular foundation are similar to those for long, heavy beams. despite the different
loading and boundary conditions (e.g. EI-Aini. 1975; Hobbs. 1985). For the initially-curved
beam. no deflection occurs until the compressive load reaches a certain value, and then the
system may buckle (if the initial curvature is sufficiently small) or deform smoothly. If the
beam is initially flat and the load is applied eccentrically below the beam centerline, uplifting
begins at the ends and extends as the load is increased (Fig. 7). If the eccentricity is
sufficiently small (e.g. if J = 0.01 in Fig. 6), buckling occurs as the load is increased past a
certain value.

Acknoll'/t'J.qemt'nrs-The authors are grateful to c.-C. Cheng for carrying out the numerical computations. They
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APPE:"DIX

In eqn (16).

;. ,r
C l = _. ~."

"

where

... ,,-~-, ,
3r I i''f .Ir' 3r'
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For mllde A nf tilt' clastica. thc1mckled length h is a rolll of the etluation

aud lht' codlicieuls in t'qn (~Il) arc

;,\j +q(I'1> sin I'" +cos
''')'\'si';7b

I)
ti,

(q -- ;·'S) cos 1'1> -q

}I~ siu f'h

For motIt' II, tht' <,oel!icicnls .I, and tI, are the same as for modc A. and

tI, = (r;~ +~</S--~I/HI'sin,:+CIlsi' It
2i'~(i'COS j' - sin ~»


