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Abstract— Uni-directional buckling of an elastica with pinned ends is investigated. A rigid foun-
dation below the beam prohibits downward deflection, and a uniform pressure acts on the beam
from above. The beam weight is neglected, and an axial compressive load is applied. Equilibrium
paths are determined for various pressures, and the effects of initial curvature and load eccentricity
are examined.

INTRODUCTION

The one-way buckling of an clastica is considered. The beam has pinned ends and is
subjected to a compressive load. A rigid foundation lies on one side of the beam and a
uniform pressure acts on the other side., The weight of the beam is neglected.

A similar problem was investigated by Wang (1985). In his case, the elastica (or sheet)
was long and only a central portion buckled, so that there was no rotation at the points of
lift-off from the rigid foundation. Wang only treated the perfect system, whereas the present
study includes beams having initial curvature and loads applied cecentrically.

A related problem is that of a compressed horizontal beam lying on a rigid foundation
and subjected to a uniformly distributed vertical load, which may represent the weight of
the beam [e.g. sce Wang (1986) and the references cited therein]. If this system is perfect,
buckling does not occur for a finite compressive load (i.e. there is no bifurcation from the
flat configuration). However, if the beam is compressed and then disturbed, it may suddenly
snap to a buckled shape. Also, if the beam hus some initial curvature and is compressed
with a quasi-statically increasing load, it may deform continuously for a while and then
exhibit the snapping phenomenon. These results may be relevant for the behavior of sheets
of paper, textiles, plastics or metals,

Such problems involving transverse resistance occur in a number of ficlds. One is the
buckling of railroad tracks due to compressive loads caused by temperature rises (El-Aini,
1976, Kerr, 1973, 1974, 1976, 1978a,b, 1979, 1980; Tvergaard and Needleman, 1981;
Samavedam er al., 1988). Vertical buckling of tracks is similar to that of the heavy beam,
but in horizontal (lateral) buckling the mode is not constrained to be uni-directional.

Buckling of pipelines, either buried or lying in trenches or on the seabed, is another
related problem (Courbon, 1980 Hobbs, 1981, 1984 ; Ariman, 1983 ; Kyriakides et al.,
1983 Yun and Kyriakides, 1985, 1986, 1988, 1990 ; Taylor and Gan, 1986; Ju and Kyria-
kides. 1988 ; Nielsen et al., 1988, 1990 ; Pedersen and Jensen, 1988 ; Pedersen and Michelsen,
1988 ; Vinogradov, 1988 ; Friedmann, 1989 ; Hobbs and Liang, 1989 ; Koh and Quek, 1990 ;
and Richards, 1990). For example, the compressive loads may be caused by hot oil or gas
in the pipeline, or by ground movement resulting from seismic activity or differential
thawing of frozen soil. Roorda (1988) discussed “'blow-up™ failures of concrete roads and
runways and the growth of delaminations in composite laminates, while Hobbs (1989, 1990)
treated two-dimensional buckling of heavy plates resting on a rigid plane. Other related
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problems are the buckling of floating ice sheets, rock strata (Kerr. 1989). and fibers in
composite materials.

In this earlier work. sometimes the displacements are assumed to be small and a linear
analysts is carried out. while in other cases geometric nonlinearities are included. If there
is a rigid base. 1t may be frictionless, or frictional resistance to axial displacement may be
included. with the friction force sometimes dependent on the tangential deformation. The
beams may be etther perfectly straight before loading or tnitially curved. The beam material
1s usually assumed to be linearly elastic. but nonlinearly elastic and elastic-plastic consti-
tutive laws have also been considered. For a beam surrounded by soil or ballast. the
resistance is sometimes taken to be a nonlinear function of the beam displacement, and in
some cases of buried pipelines a portion of the buckled shape may protrude out of the soil.

The present paper examines the buckling and post-buckling behavior of a slender.
inextensible, uniform. elastic beam [an ¢lastica (Love. 1944)] on a rigid foundation. Detlec-
tion of the beam is resisted by a uniform pressure. Compressive axial loads are applied quasi-
statically at the ends of the beam, which are simply supported. Two types of imperfection are
treated : eccentricity of the axial loads and curvature of the foundation (and beam).

This rescarch is related to work presented in Mrdz and Plaut (1992). In that study.
buckling and post-buckling behavior of discrete elastic systems Iving on a frictional plane
arc analysed. Resistance to displacement is due to dry friction between the system and the
planc. The results obtained here for a pressure resistance are also applicable to the case of
such frictional resistance i the friction force has a constant magnitude and only acts in
direction normal to the centertine of the beam.

ELASTICA

Consider the beam showp in Fig. 1. It is inextensible, uniform, slender and elastic with
bending stitfness £7. 1t has length 2L and is simply supported at its ends. A rigid foundation
lies below the beam, and the beam cannot deflect downward. In Fig. 1(a), the foundation
is Nat and the unstrained configuration of the beam is flat. In Fig. 1(b), the foundation has
some curvature and the unstrained beam has the same curvature and rests on the foundation.
The contact between the foundation and the beam is assumed to be frictionless. A buckled
contiguration is depicted in Fig. 1(¢). The horizontal compressive foads are P and the
uniform normad force is Q per unit length.

The arc length 5 is measured from the center of the beum. When the beam s unstrained,
its contiguration is defined by the angle 0,(5) of its tangent (with ¢,(5) = 0 if the beam is
flat), while O(5) denotes the angle for a deformed configuration. The configurations iare
assumed to be symmetric about § = 0, so that 8,(0) = 0, 0(0) =0, 0,(—5) = —0,(5), and
(—3) = —0(5). The rotation O(L) at the right support is denoted 2. The loads P are
applied to the ends either at the centerline (i.e. concentrically) or at a small distance A
normal to the centerline and below it (i.c. cccentrically).

Consider an element of the beam as shown in Fig. 2. The quantitics M(5), N(§) and
V(§) are the bending moment, axial force and shear foree, respectively, with positive senses
indicated in Fig. 2. From the cquilibrium of tangential forces, moments and normal forces.
with df — 0, and from Hooke's law, one obtains the equations

y Q N
N =TI m .
>
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Fig. 1. Geometry of clastica : () unbuckled configuration with no initial curvature ; (b) unbuckled
configuration with initial curvature: (¢) buckled configuration.
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Fig. 2. Equilibrium of element of elastica.

N =Vo, V=M. V+NO =0, M=ENE-0,). (la,b,c.d)

where a prime denotes differentiation with respect to §.
Assume that the foundation profile and unstrained beam configuration are given by

04(5) = fi5. 2

where f may be zero (flat profile) or a positive constant (circular profile). Then eqns (la,
b, d) lead to the relations

V=EN, N =EIOU. (3a.b)
Intcgration of eqn (3b) yiclds
N(E) = No+ (EIR)[0(5))* 4)

where N, is a constant. Then substitution of eqns (3a) and (4) into eqn (Ic) yields the
lollowing nonlincar equation in 0(5) :

EI0” + N + (EIR)0) = Q. (5)

Since the slope and shear foree are zero at the center, and the moment is PA cos a at the
right support, the boundary conditions are

00) =0, 070) =0, EI0(L)Y-0y(L)] = PAcosu. (6a.,b,c)
Also, horizontal equilibrium at § = L furnishes the condition
P = Nycosa+ (EL2)[0'(L))* cosx— EI0"(L)sinx (7

where eqns (3a) and (4) have been used.
Now dcfine the nondimensional quantitics

s=§L, 7= NLY(EI, p=PLY(El), q=QLY(El). é=A/L, p=fL (8)
and let primes denote differentiation with respect to s. Then eqns (5)-(7) become

0 +7%0" +(1/2)(0)° = q. 0(0) =0, 0"0)=0, O()=pf+pdicosx, (9,10)

and
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p=""cosx+ {1 [0 (1)] cosx—"(1)sina. (n

respectively. while eqn (2) becomes 8,(s) = fis.

In some cases with small curvature ¢, a linearized solution will be accurate. Suppose
that the term (1 2) ()" can be neglected in egn (9). The solution of the resulting linear
equation, with boundary conditions (10}, is given by

0(s) = [ys ()] +[(B+770)7" —g¢]sinzs (77 cosy) (12)

where cos x > | has been used when 0 # 0. and p = ;°. This solution becomes unbounded
as 7 — r, 2, which corresponds to the Euler buckling load .V, = n°Ef/(4L°) obtained from
the lowest eigenvalue of the lincarized system when ¢ = =0 =0 (a perfect. pinned-
pinned column of length 21).

PERFECT SYSTEM

In this section. assume that the beam is initially straight (f = 0) and the load is applied
concentrically (8 = 0). Numcrical solutions of ¢gns (9) and (10) arc obtitined with the use
of a shooting method (Wang, 1984). For a specified value of %, eqn (9) is solved by a
Runge -Kutta method with “initial conditions™ 0(0) = 0, 07(0) = 0, and different values of
() until the condition (1) = 0 1s satisficd. Then p s given by eqn (1) with 2 = 0(1).

Results are presented in Fig. 3 for nondimensional pressures ¢ = 0, 0.1, 0.3, 0.5 and
1.0. The nondimensional compressive load p is plotted as a function of the end rotation .
When there is no pressure (¢ = 0), the nontrivial equilibrium path bifurcates from the trivial
solution (0 = 0) at p = n*/4. When ¢ > 0, there is no bifurcation and the flat beam (x = 0)
18 stable for any load. On the cquilibrium paths, p — » as x — 0, and there is 4 minimum
at a value of p larger than 774, This minimum value of p is called the “safe buckling load™
by Kerr (1973) and is p = 2.68,2.84,2.93 and 3.01 for ¢ = 0.1, 0.3, 0.5 and 1.0, respectively.
For higher loads, a disturbance may cause the straight clastica to snap suddenly toward
the rising (right) side of the equilibrium path in Fig. 3, which is associated with large
displacements. Such a jump is sometimes called “upheaval buckling”™ (Richards, 1990).

5.0

45}

4.0

p 35

20 .
0 0.2 04 0.6 0.8 1.0 1.2

Fig. 3. Effect of pressurc on load -displacement curves for elastica: f = 0,6 = 0.
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Fig. 4. Load—displacement curves for elastica: ¢ = 0.1, f = 0.6 = 0.

The equilibrium path for ¢ = 0.1 is replotted in Fig. 4. In addition, the lincar solution
is shown as a dash-dot line. It is obtained from eqn (12) with f =9 =0, a = 0(1), and
p = 7°, and the equilibrium path decreases monotonically as « increases, approaching the
Euler buckling load p = n%/4 (Kcerr, 1974). It the lincar solution (12) is used to determine
a, and then the nonlincar relation (11) is applicd to obtain p, the resulting pairs (a, p) form
the dashed line in Fig. 4, which may be termed a “quasi-lincar™ solution.

A perturbation analysis was also carried out. For # = ¢ = 0 and small values of ¢ and
0, let

—u
(e

g = \ﬂr 0= \/::(t//,+1:|p3+ ) Y =yideyie oo, (13)
where ¢ is a small parameter. These relations are substituted into eqns (9) and (10), which
are then divided by \/E. Setting the coefficients of ¢” equal to zero yields

v

Vi = (0) = ¢i0) = ¢i(1) =0, (14)

which has the linear solution (12) with 0 replaced by ¢, v by y,, and ¢ by r.
Next, the coefficients of &' are set equal to zero. This leads to the system

YV i = 7= M) 6a(0) = 9a(0) = (1) =0, (15)
which has the solution
Vi) = ¢ ;54 c,(siny s—3,5c087,8) +cysin 2y s+ ¢ sin3ys (16)

where the ¢, are given in the Appendix. The functions ,(s) and ,(s) are substituted into
eqn (13) to give 0(s), which can be written in terms of 7, and ¢. The first-order terms (from
) arc proportional to ¢, and the terms from ¢ , are proportional to ¢*. To obtain numerical
results, y, is varied, a is given by 0(1), and p is determined from eqn (11). For ¢ = 0.1, the
equilibrium path bascd on this perturbation solution is indistinguishable in Fig. 4 from the
numerical solution of the nonlinear system (9)-(11), given by the solid curve.

INITIAL CURVATURE

In this section, the foundation is curved and the beam has initial curvature (0, = fs)
but the loads have no eccentricity (5 = 0). The initial slope at the support (s = ) isx = f.
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Fig. 5. Effect of initial curvature on load-displacement curves of elastica; ¢ = 0.1. 0 = 0.

For the shooting method used with eqns (9) and (10). the condition at s = | 1s now
(1) = B. The pressure is taken to be ¢ = 0.1. Equilibrium paths in the (x, p) plane are
presented in Fig. S for f# = 0.03. 0.05 and 0.10, as well as for the perfect system (f = 0).

As the compressive load is increased, no displacement occurs (x = f#) until a certain
threshold is reached. This value is p = 3.30, 2.00 and 1.00 for f = 0.03, 0.05 and 0.10,
respectively. If f# s sufficiently small, the initial load -displacement curve for x > ff has a
negative slope, e.g. for f# = 0.03 in Fig. 5. For such a casc, if p is increased past its threshold
vitlue, the elastica suddenly snaps toward an cquilibrium state with large displacements.
However, if f is sufficiently large, ¢.g. for # = 0.05 and 0.10 in Fig. 5, the path is rising and
displacements change smoothly with increasing load. Hence buckling only occurs if the
initial curvature is sutliciently small.

ECCENTRICITY
Now suppose that the beam is initially straight (ff = 0) but that the loads £ are applied
quasi-statically at a small distance A normal to the centerline and below it. Results for
¢ = 0.1 arc shown in Fig. 6 with d = 0.01,0.02,0.03, 0.04 and 0.05, along with the concentric
case & = 0. A logarithmic scale is used on the abscissa.

5 TorTrTTeT LA ENL I IR LR b T YT T
4 b
3 5=0.01
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a
Fig. 6. Effect of eccentricity on load -displacement curves for elastica: ¢ = 0.1, f=0
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In order to obtain the load-displacement curves in Fig. 6 with § > 0, first the shooting
method was applied to eqns (9) and (10) with § = 0 and p defined by eqn (11). This yields
the solid curves on the right side of the figure. As x is decreased {from 2 = 1), the central
deflection of the buckled configuration decreases [see Fig. 7(f). (¢), (d}] and reaches zero
at the ends of these solid curves [see Fig. 7(c)]. This occurs at x = 0.009 and p = 3.97. 2.04,
1.37, 1.03 and 0.83 for ¢ = 0.01. 0.02, 0.03, 0.04 and 0.05, respectively.

For smaller values of z, the beam is constrained by the rigid foundation and the
boundary conditions (10) must be altered. In the range where the curves in Fig. 6 are
dashed. the beam has no deflection at the centre point (s = 0). and the shear force there is
not zero [see Fig. 7(c)]. Hence the boundary condition 8”(1) = 0 is replaced by the condition

1
J sinf(s)ds =0 (7

requiring that the deflection be the same at s = 0 and 5 = 1. This case will be designated
“mode B”. For smailer values of a (x < 0.004), depicted by solid curves on the left in Fig.
6. the beam has no deflection in a central region [see Fig. 7(a), (b)]. This will be designated
“mode A”. If lift-off occurs at s = a, then the boundary conditions for the buckled section
{a < s < 1) are given by

i
Ha) =0, ) =0, (1) =0, j sin@(s)ds = 0. (18

For mode A, the rotations are very small. However, since the length of cach uplifted
section also may be small, the curvature may not be small and the nonlincar term in egn
(9) may be important. Both a nonlincar and a lincar analysis were carried out, and it turned
out that the results were almost identical “For mode B, a lincar solution is also very accurate.
The lincar solution is presented here, in terms of the beam deflection,

Consider the coordinate ¥, measured from the left support, and the upward detlection
Foasshown in Fig, L), and let p = §/L and x = £/L. The lincarized cquilibrium equation
for p(x)is

YR+ = —¢ (19)

with the load given by p = y?and 0 related to y by 0(x) = —”(x). The solution of eqn (19)
has the form

e A N

(a)p -0.20,y, = 1.1 x 107 (b)p =0.80,y, = 1.9x107*

(Cp =175y, ~87x10™* (d)p =2.05,y, « 1.5x 1073

{8} p =230,y = 0.041 {lp=3.21y, =073

Fig. 7. Buckled configurations of clastica: ¢ = 0.1, f = 0. 8 = 0.02. The vertical scales are magnified
in (a)-(e).
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3(x) = — ;f—l‘-:x:—kdl +d.x+dsinyx+d;cos . (20)
-

As the eccentric load is increased from zero, the beam first exhibits mode A {Fig. 7(a), (b)].
The nondimensional length of each buckled region is denoted (0 < b < 1). and the beam
has no deflection. rotation or bending moment at x = b. Hence the boundary conditions
for mode A are

y(0)=0. y(0) = —ps. v(b)=0. 1'(h)=0. 1"(h) =0. (21)

Application of these conditions to eqn (20) leads to a transcendental equation for b and
formulae for d,. d.. d, and d,. which are given in the Appendix. As mentioned earlier,
resulting curves of p as a function of the end rotation x are plotted on the left side of Fig.
6 for five values of eccentricity.

As p is increased. the buckled length & increases. When b reaches unity, mode B takes
over [Fig. 7(¢)]. In this mode, the bending moment at the center of the beam (x = 1) is not
zero, so that the boundary conditions are given by the first four conditions in eqn (21) with
b = 1. The resulting coctficients in eqn (20) are listed in the Appendix. and load-dis-
placement paths are depicted as dashed curves in Fig. 6.

As pis increased further, the dashed curves in Fig. 6 mect the solid cquilibrium paths
based on eqns (9) (11). for which the central detlection v(1) is positive [Fig. 7(d), (¢). (D]
Mode B becomes unstable and the center of the beam lifts off the foundation. For cceen-
tricitics & = 0.02, 0.03, 0.04 and 0.05 i Fig. 6, this transition is smooth, since the new
cquilibrium paths are rising and stable. The sequence of buckling modes for the case
d = 0.02 is ilustrated in Fig 7, where v, denotes the maximum value of v for cach
configuration. However, if 6 = 0.0 and pis increased beyond its bifurcation value p = 3.97,
the clastica snaps suddenly toward a state with very large displacements. Thus, if the
ceeentricity is sufliciently small, buckling occurs when the center of the beam first deflects
and the curvature of the central region changes sign.

CONCLUDING REMARKS

The work presented here is different in several respects from the studies described in
the references. First of all, the ends of the beam considered here are simply supported,
whereuas the previous investigations treated cases in which the beam is tangential to the
foundation at the ends of an uplifted section (usually an interior section of a long beam).
Secondly, the case of eccentric loading is included here, but not in the references. In addition,
only Wang (1983) also considered downward pressure ; the other papers treated a uniformly
distributed vertical load (¢.g. the weight of the beam). The behavior for these two types of
loading is similar when the beam rotations are small.

The foundation profile in the present study is assumed to be flat {Fig. 1(a)] or circular
[Fig. 1(b)]. with the unstrained beam in full contact with the foundation. [Partial contact
is considered, for example, in Richards (1990).] The deflections of the beam turn out to be
symmetric about its center. Thus the analysis can be carried out using half of the beam. If
the foundation were symmetric but not rigid, asymmetric deflections might occur. The only
reference including an asymmetric and rigid foundation is Koh and Quek (1990). In that
study. the upheaval buckling loads (corresponding to a jump in the beam configuration as
the compressive load is increased) for an asymmetric foundation are sometimes lower and
sometimes higher than those for a related symmetric foundation.

In the problem analysed by Yun and Kyriakides (1983), extensibility of the beam had
little effect on the results. Here, and in a number of the previous papers. longitudinal
deformation is neglected and the beam is assumed to be inextensible. Also, friction between
the beam and the foundation is neglected here. although it is included in many of the
references.
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The forms of the load—displacement curves in Fig. 3 for the flat foundation and Fig.
S for the circular foundation are similar to those for long, heavy beams. despite the different
loading and boundary conditions (e.g. El-Aini, 1975 ; Hobbs, 1985). For the initially-curved
beam. no deflection occurs until the compressive load reaches a certain value, and then the
system may buckle (if the initial curvature is sufficiently small) or deform smoothly. If the
beam is initially flat and the load is applied eccentrically below the beam centerline, uplifting
begins at the ends and extends as the load is increased (Fig. 7). If the eccentricity is
sufficiently small (¢.g. if § = 0.01 in Fig. 6), buckling occurs as the load is increased past a
certain value.
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also acknowledge helpful suggestions by the reviewers.

REFERENCES

Ariman. T. (1983). A review of buckling and rupture failures in pipelines due to large ground deformations. In
Eurthyuuke Behurior and Sufety of Oil and Gas Storage Fucilities, Buried Pipelines and Equipment (Edited by
T. Animan). PVP-Vol. 77, pp. 176-180. ASME. New York.

Courbon. J. (1980). The equilibrium of a heated beam resting over a rigid horizontal plane (in French). J. Mec.
Applig. 4, 385-406.

El-Aini, Y. M. (1975). A noalinear analysis for one-way buckling of a laterally loaded columa. J. Mech. Engng
Sci. 17, 150154,

El-Aini, Y. M. (1976). Effect of foundation stiffness on track buckling. J. Engng Mech. Div. ASCE 102, 531-545.

Fricdmann, Y. (1989}, In-service mechanical behavior of heated pipelines laid on seabed surface. In Proc. 8th Int.
Conf. on Offshore Mcech. and Arctic Engng (Edited by J. S, Chung, K. Karal, T. Taira and S. T. Barbas), Vol.
V.pp. H3-119. ASME. New York.

Hobbs, R, E. (1981). Pipcline buckling caused by axial loads. J. Construe. Steel Res. 1,210,

Hobbs, R. E. (1984). In-service buckhing of heated pipelines. J. Transp. Engng 110, 175-189.

Hobbs, R, E. (1985). Discussion of : Buckling and postbuckling of the lying sheet (by C. Y. Wang). Int. J. Solids
Structures 21, 423 424,

Hobbs, R E. (1989). Two-dimensional upheaval buckling of o heavy sheet. Thin-Walled Struc. 8, 235 252.

Hobbs, R, E. (1990). Axisymmetric upheaval buckling of a heavy sheet. J. Appl. Mech. 87,472 474,

Hobbs, R. E.and Liang, R, (1989). Thermal buckling of pipelines close to restraints. in Proc. 8th {nt. Conf. on
Offshore Mech. Arctic Engng (Edited by J. 8. Chung, K. Karal, T. Taira and S. T. Barbas), Vol. V, pp. 121~
127. ASMLE, New York,

Ju, G. T and Kyriakides, S. (1988). Thermal buckling of oflshore pipelines. J. Offshore Mech. Aretic Engng 110,
155 364

Kerr, A DL (1973). A model study for vertical track buckling. High Speed Ground Transp. JI'7, 351 -368.

Kerr, A. D). (1974). On the stability of the railroad track in the vertical plane. Rail Ine. 2, 131-142.

Kerr. AL DL (1976). The effect of lateral resistance on track buckling analyses. Ruil Int. 1, 30-38.

Kerr, A. D. (19784). Analysis of thermal track buckling in the lateral plane. Acta Mech. 30, 17-50.

Kerr, A. D. (1978b). Lateral buckling of railroad tracks due to constrained thermal expansions—a critical survey.
In Ruilroud Track Mechanics and Technology (Edited by A. D. Kerr), pp. 141-169. Pergamon Press, Oxford.
Kerr, A. D. (1979). On thermal buckling of straight railroad tracks and the effect of track length on the track

response. Ruil Int. 9, 759 -768.

Kerr, A. D. (1980). An improved analysis for thermal track buckling. /nt. J. Non-Lin. Mech. 15, 99-114.

Kerr, A. D. (1989). Additional comments on buckling analyses of embedded layers. Tecronophys. 169, 149-152.

Koh, C. G. and Quek, S. T. (1990). Limit loads of buried pipelines with asymmetric initial imperfections. J. Pres.
Fes. Tech. 112, 392-396.

Kyriakides, S., Yun, H. D. and Yew, C. H. (1983). Buckling of buried pipelines due to lurge ground movements.
In Earthquake Behavior and Sufety of Oil and Gas Storuge Facilities, Buried Pipelines and Equipment (Edited
by T. Arimun), PVP-Vol. 77, pp. 140-150. ASME, New York.

Love, AL E. H. (1944). A Mathematical Treatise on the Theory of Elasticity (4th Edn). Dover, New York.

Mroz, Z. and Plaut, R. H. (1992). On the stability and post-critical behavior of elustic structures with dry friction.
Int. J. Solids Structures 29(10), 1241 -1253.

Niclsen, N. J. R., Lyngberg, B. and Pedersen, P. T. (1990). Uphcaval buckling failures of insulated buricd
pipelines : a case story. In Proc. 22nd Annual Offshore Tech. Conf., pp. 581-592. Houston.

Niclsen, N. J. R., Pedersen, P. T, Grundy, A. K. and Lyngberg, B. S. (1988). New design criteria for upheaval
creep of buried subsca pipelines. In Proc. 7th Int. Conf. Offshore Mech. Arctic Engng, Vol. V, pp. 243-249,
ASME. New York.

Pedersen, P. T, and Jensen, J. J. (1988). Uphcaval creep of buried heated pipelines with initial imperfections.
Marine Struc. 1, 1122,

Pedersen, P. T. and Michelsen, J. (1988). Large deflection upheaval buckling of marine pipelines. In Proc. 4th
Int. Conf. Behaviour of Offshore Struc., Vol. 3. pp. 965-980. Trondheim, Norway.

Richards, D. M. (1990). The effect of imperfection shape on uphcaval buckling behavior. In Advances in Subsea
Pipeline Engineering and Technology (Edited by C. P. Ellinas), pp. 51-66. Kluwer, Dordrecht.

Roorda, J. (1988). Buckles, bulges. and blow-ups. In Applicd Solid Mechanics—2 (Edited by A. S. Tooth and J.
Spence). pp. 347-380. Elscvier, London.

Samavedam. G.. Kish. A., Thurston, M. and Jeong, D. (1988). Recent advances in track buckling mechanics. In
Applicd Mechanics Rail Transportation Symposium—1988 (Edited by V. T. Hawthorne, E. H. Law and P.
Tong). AMD-Vol. 96, RTD-Vol. 2, pp. 95-100. ASME. New York.



Ji0u R. H. Praut and Z. Mroz

Taylor, N. and Gan. A. B. (1986). Submarine pipeline buckling—imperfection studies. Thin-Walled Struc. 4, 295
323

Tvergaard, V. and Needleman, A, (1981). On localized thermal track buckling. fnr. J. Mech. Sci. 23, 577387

Vinogradov, A. M. (1988). Buckling analysis of pipelines supported by soil medwa. In Elustic-Plastic Failure
Maodelling of Structures with Applications {(Edited by D. Hutand T. J. Kozik). PVP-Vol. 141, pp. 8996 ASME.
New York.

Wang. C. Y. (1984). On symmetrnic buckling of a finite Sat-lying heavy sheet. J. Appl. Mech. 51, 278282,

Wang, C. Y. (1985). Post-buckling of a pressurized elastic sheet on a rigid surface. Ins. J. Mech. Sci. 27, 703
709,

Wang, C. Y. (1986). A critical review of the heavy elastica. [ne. J. Mech. Sci. 28, 549-559.

Yun. H. and Kyriakides. S. (1985). Model for beam-mode buckling of buried pipelines. J. Engng Mech. 11, 235
253

Yun, H. D.and Kyriakides, S. (1986). Buckling of pipelines in seismuc environments. In Prec. 3rd U5, Nut. Conf.
on Earthquake Engny. Vol. U1 pp. 2179-2189. Charleston, South Carolina.

Yun, H. D. and Kyriukides. S. (1988%). Localized plastic buckling of a heavy beam on a contacting surface. J
Pres. bVes. Tech 108, 146 150,

Yun, H. and Kynakides, S, (1990). On the beam and shell modes ot buckling of buried pipelines. fne. 4. Soil Dyvn.
Eurthquake Engng 9, 179 -192.

APPENDIX
In egn (16),
it It vir ! 3! r
E P T ateesty €= 2vicosy, * 4% cosy, * 160 cos 'y, " o &7 st
r\
G 1920cos 'y,
where
. P2y singy (D pdeosTy ) - oosy 6 £dcos Ty
N CoAteos'y (2 ey tanyy)
For mode A of the elastica, thebuekled length b 15 a root of the equation
260 g+ gRosyh) Fu(ght = 20 0) sinph = 0
and the coetlicients wegn (20) are
w5 4 alhsin of £ oos uh - Sy cos h —
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For mode B, the coetlicients o and d, are the same as for mode A, and

y @ 2 ) siny +eosy - 1)
dy = L E S T AT o

24 (pcosy —sing)



